浅谈低压断路器的限流技术
2016-10-10
任何开关电器应用特例其实是在工程设计中出现的,而不会出现在研发过程中。解决这些工程应用特例,研发出开关电器的新产品,会极大地提升产品的工作特性和它的市场价值。
但在新品未面市前,设计工程师们要用现有的产品来解决问题。由此可见,设计工程师们的实际工作经验远高于研发工程师,而且理论分析能力未必会低于研发工程师。
限流,是低压限流型断路器的一项功能。
在低压断路器限流技术里,有许多很有意思的物理现象,以及独特的结构设计和工作原理。
解析低压断路器的限流技术之前,我们不妨先来了解一下低压断路器的发展历程。以下文本摘自《低压电器的灭弧技术》:
20世纪20年代,Slipen提出了电流过零后出现鞘层和近极作用(即:近阴极效应),发明了栅片灭弧,使低压电器从简单灭弧的第一代刀开关,发展到配电线路用的断路器和控制系统用的接触器等专用的品种,前者使得低压配电系统具有较高的开断能力,后者则满足控制要求的频繁操作能力。
20世纪50年代,发现开关电器触头开断后电弧有个短暂的停滞过程(即:零休时间),这个过程对控制电器的电气寿命和断路器的开断性能有很大的影响,包括触头材料、吹弧磁场、触头打开速度、灭弧室尺寸等,这些研究对低压开关的开断性能和电气寿命的提高起了很大的作用。
这一时期另一个对提高低压电器性能有重大意义的是磁场吹弧的新机理,即横向磁场能在弧柱中感应出流场,使冷气流从电弧前端进入而从后端流出,形成对称涡流的流场,这一冷气流可带走电弧的热量,有利于电弧的熄灭;另一方面在触头分断的初期,这一作用可使然弧初期的金属相电弧转变为气相电弧,有利于缩短电弧的停滞时间。这一发现使磁吹成为当时最有效的灭弧措施之一。
随着低阻抗大容量变压器的故障短路电流可达100kA以上,要求故障分断电器不但要有足够大的分断能力,还应带有显著的限流效应,这就促进了限流技术在低压电器中的应用。
限流型低压断路器的限流原理是依靠短路电流产生的电动斥力或通过冲击电磁铁产生的电磁力使触头系统在操作机构动作前就使提前斥开而呈现电弧,利用电弧电压来限制电流。
ABB公司在意大利的低压电器分公司根据这一原理早在20世纪80年代初期就提出触头单边斥开,触头双边斥开,电动机槽结构和双断点开断等多种限流断路器的结构方案,尽管近年来限流技术有很大的发展,但这些基本方案仍沿用至今。
20世纪80年代初期,英国、德国和日本相继发现了限流开断过程中电弧背后击穿与转移现象,并研究出这种现象是由于背后区域热击穿所引起的。
上世纪80年代末,施耐德电气公司提出“固体绝缘屏幕”的限流技术,它用一绝缘材料制作的屏幕插入动、静触头之间,把电弧隔断,该公司并把这种技术应用于额定电流为25A的Optical25小型断路器。
对低压断路器来说,直到20世纪末才开始注意气吹对提高低压断路器开断性能的作用。当开断时,电弧高温使产气材料气化,通过冷却电弧和控制电极的金属蒸气喷流来达到提高电弧电压和开断性能的目的:把产气材料放在由静触头导电回路形成的槽中,进一步加强气吹作用,被称为槽形冲击加速器技术(ISTAC),并开发出PSS系列塑壳断路器。
低压电器的气吹作用,可由两种方法来达到,一种是依靠灭弧室器壁放置的产气材料产气,另一种是利用半封闭独立的灭弧单元,让电弧高温在灭弧单元内引起压力上升,通过出气口而形成气吹。
施耐德电气公司的NS系列塑壳断路器就充分利用了上述两种气吹作用,并使产品达到同期塑壳断路器中最高的开断能力,与之同时半封闭的灭弧室结构和气吹作用的应用也推广到框架断路器上,使框架断路器的开断性能也有大幅度的提高
施耐德电气公司推出的NS系列塑壳断路器之所以能达到高的开断性能,除了依靠独立灭弧单元和气吹的作用外,另一原因是采用了旋转双断点的开断结杓,这种触头系统的结构,到了新世纪进一步得到了推广。
国际上著名电器公司纷纷推出新一代采用双断点触头系统和利用气吹作用的塑壳断路器,如美国CE公司的RecordPlus系列,ABB公司的TMAX系列等,结构上也更多样化,除旋转双断点外,又出现了平行双断点和桥式双断点等新结构,日本寺崎公司更是把双断点的结构用于框架断路器,推出了TemPower2断路器,改变了框架断路器传统的单断点结构。
传统的限流开关,电弧能量全部由断路器开断过程来承担,因而限制了断路器尺寸的进一步缩小,一种新的思路是用一个限流器和断路器串联,在开断时,电弧能量大部分由限流器来承担,这就可以大大地减轻断路器的负担。
这种限流器可以由多种原理来实现,近年来受人注目的是采用一种称为正温度系数的材料PTC来实现,它是一种导电塑料,由聚合物(如聚乙烯)加上填充的导电炭粒组成,当短路电路通过这种限流器,使原有导电炭粒组成的桥路因热膨胀拉断,让限流器的电阻骤然增加而达到限流效果。
另一方面真空开断技术、固态断路器也在不断地发展,西门子公司3WSI低压真空断路器的开断能力已达50kA,尽管其开断能力尚不能与空气灭弧的传统断路器相比较,但无电弧或无喷弧使安全性远高于传统的结构。
解释几个相关概念:
(1)交流电弧的零休和重燃条件
我们先来看看交流电弧的过零熄弧及重燃条件。这对于理解限流原理很重要。
我们知道,当电弧电流过零时,切确地说,是在过零前某时刻,由于电弧电压已经低于起弧电压,电弧熄灭。但是,电弧留下了炽热的气体,这些气体中仍然保持一定的正负离子。随着温度的迅速降低,正负离子越来越少。弧隙中的这团炽热气体,它的特性可以用重燃电压来表示,即Ub。