CN
EN

行业应用

隔离控制电路应该使用光耦双向可控硅或脉冲变

2017-02-28

驱动双向可控硅有很多控制电路可以考虑,前提是隔离电路。图1中的两个双向可控硅的参考电压不同,所以隔离控制电路应该使用光耦双向可控硅或脉冲变压器。两个电路的工作方式不同,产生的EMI噪声也不相同。

图 2 所示是一个光耦双向可控硅驱动电路。当光耦双向可控硅LED激活时(即当微控制器I/O引脚置于高边时),通过R1施加双向可控硅栅极电流。电阻R2连接在双向可控硅G与A1端子之间,用于分流瞬变电压在光耦双向可控硅寄生电容上产生的电流。通常使用50-100欧姆的电阻器。

该电路的工作原理是在每个电流过零点(如图2所示)上产生峰值电压,即便光耦双向可控硅内置电压过零电路也是如此。

 

事实上,在光耦双向可控硅电路内,双向可控硅的 A1和 A2端子之间必须有电压,才能向栅极上施加电流。双向可控硅导通时的电压降接近1V或1.5 V,这个压降值不足以向栅极施加电流,因为该压降小于光耦双向可控硅压降与G-A1结压降之和(两者的压降都高于1V)。因此,每当负载电流过零点时,没有电流施加到栅极,双向可控硅关断。

当双向可控硅关断时,线路电压施加在双向可控硅的端子上,该电压必须将VTPeak 电压提高到足够高,才能使施加的栅极电流达到双向可控硅IGT电流值。

图2实验使用了一个T2550-12G双向可控硅(25 A,1200 V,50 mA IGT),最高峰值电压等于7.5 V(在负电压转换过程中)。假设 G-A1结和光耦双向可控硅的典型压降分别为0.8 V和1.1 V,这个实验使用一个200欧姆电阻器R1取得28 mA栅极电流。对于我们所用样品,这个电流是第三象限(负电压VT 和负栅极电流)导通所需的电流IGT。

如果样品的IGT电流接近最大指定值(50 mA),VTPeak 电压将会更高。因为IGT 值随着温度降低而升高,如果双向可控硅的结温较低, VTPeak 电压将会更高。

因为VTPeak电压的频率是线路电压频率的两倍(若市电50 Hz ,则该电压频率是100 Hz),其EMI噪声辐射超出了EN 55014-1电器设备和电动工具标准规定的辐射限制。还应指出地是,这个噪声只在双向可控硅导通时才会出现。只要绕过继电器,噪声就会消失。EN 55014-1断续干扰限制规定与反复率(或“click”)有关,即混合式继电器的工作频率和干扰时长。

为避免这些电压峰值,在光耦双向可控硅与脉冲变压器之间优先选择脉冲变压器。在变压器二次侧增加一个整流全桥和一个电容器,用于修平整流电压,为驱动双向可控硅栅极提供直流电流。因此,在电流过零点不再有尖峰电压,不过,当导通状态从机电继电器转换到双向可控硅时,还会发生电磁干扰。只有在混合式继电器关闭时才会发生导通转换。图 3.a描述了这个阶段发生的尖峰电压;时间恰好是在双向可控硅导通时,整个负载电流从继电器突然切换到双向可控硅。图 3.b图所示是双向可控硅上电流上升过程的放大图。dIT/t速率接近8 A/µs。双向可控硅被触发时还没有导通(因为全部电流还是流经机械继电器),当电流开始流经可控硅时,硅衬底具有很高的电阻。高电阻将会产生高峰值电压,在图3使用T2550-12G进行的实验中,该峰压为11.6 V。

在双向可控硅开始导通后,其硅结构的正反面P-N结将向硅衬底注入少数载流子,这会降低衬底的电阻,将通态电压降至约1V-1.5 V。

这种现象与PIN二极管上的峰值压降现象相同,导通时电流上升速率高,所以PIN二极管数据手册给出VFP 峰压,该参数大小与适用的dI/dt参数有关,如果是高频开关应用,该参数将会影响能效。在混合式继电器中,VFP 电压只在继电器关闭时才会出现,计算功率损耗时无需考虑。

还应注意地是,既然VFP 现象是因注入少数载流子以控制衬底电阻所用时间造成的,1200V的双向可控硅的VFP高于800V解决方案的VFP,例如,T2550-8。因此,必须精心挑选器件所能承受的VFP电压,因为过高的余量将会导致双向可控硅导通时峰压较高。

虽然峰压实际测量值高于在光耦双向可控硅电路上测量到的峰压,但是,因为这种现象只是在混合式继电器关闭时每周期出现一次,且持续时间只有几毫秒,所以,EMI电磁干扰还是降低了。尽管脉冲变压器使用昂贵的铁氧磁芯,体积大,成本高,考虑到这个原因,脉冲变压器驱动电路依然是首选。